NIH / NIAID Conference: Anti-infective Drug Development

Identification of Small Molecule Inhibitors of Anthrax Lethal Factor

Alan T. Johnson, Ph. D.

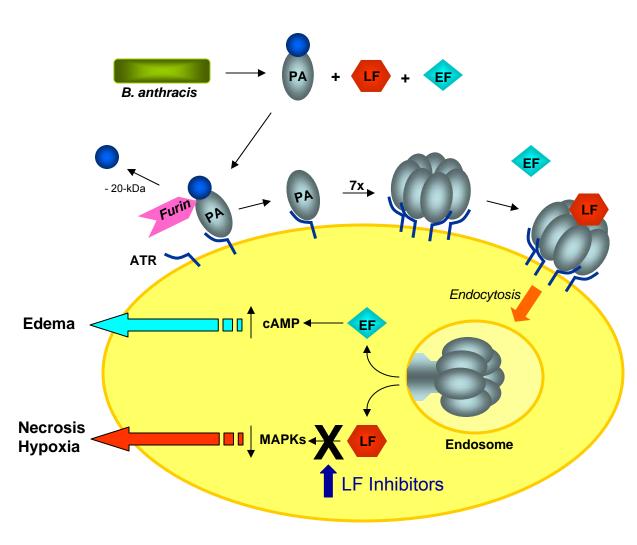
02/07/07

Anthrax as a Disease and Weapon

Anthrax (*Bacillus anthracis*) occurs worldwide in soils as a large, spore forming, Gram-positive bacillus.

• In humans, three forms are known; cutaneous, gastrointestinal, and inhalation anthrax.

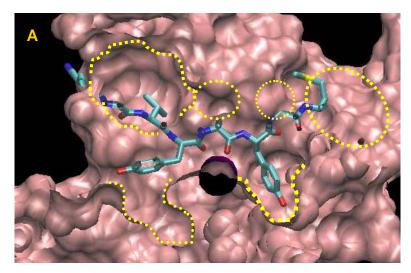
Classified as a Category A agent by the NIAID.


• Anthrax spore attack via US mail (2001) caused 11 confirmed cases of inhalation anthrax resulting in five deaths.

Current therapies include;

- Vaccines such as BioThraxTM (AVA).
- Antibiotics such as Ciprofloxacin which have a narrow therapeutic window.
- Biologics such as ABthrax (vs. PA) which suffer from major logistical drawbacks such as; cost, long term storage, and mode of administration (i.v.).

The Pathogenesis of Anthrax



- 1. Bacteria releases Protective Antigen (PA), Edema Factor (EF), and Lethal Factor (LF). (antibiotics work here)
- 2. PA binds to cell surface receptor (ABthrax works here)
- 3. Furin converts PA_{83} to PA_{63}
- 4. Seven PA proteins combine to provide a door into cell.
- 5. Heptamer binds EF and LF and undergoes endocytosis.
- 6. EF and LF are released into cell.
- 7. EF upregulates cAMP resulting in edema.
- 8. LF cleaves MAPKs shutting down cell machinery resulting in cell death.

Anthrax Lethal Factor as a Drug Target

Goal: Neutralize the intracellular effects of lethal toxin by inhibiting the LF protease

Cross section of LF Binding Site with bound peptide substrate.

B
S3
S1
ZBG
R
S1'
S1'
Non-prime Side

Prime Side

Schematic view of the LF Binding Site

Turk, B.E.; et al. Nat. Struct. Mol. Biol. 2004, 11, 60

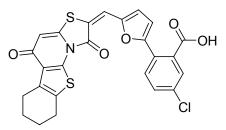
Requirements for good affinity

- A strong Zinc Binding Group (ZBG).
- Occupancy of the S1' subsite.

Small Molecule LF Inhibitors

Turk, B.E.; et al. Nat. Struct. Mol. Biol. 2004, 11, 60

NSC 12155


Panchal, R.G.; et al.
Nat. Struct. Mol. Biol. 2004, 11, 67

BI - 11B3

Johnson, S.L. *et al. J. Med. Chem.* **2006**, *49*, 27

Merck L915

Xiong, Y.; et al. Bioorg. Med. Chem. Lett. **2006**, *16*, 964

MSU - 1

Schepetkin, I.A.; et al. J. Med. Chem. **2006**, 49, 5232

Medicinal Chemistry at PanThera

Computational Chemistry

Molecular Modeling
Virtual screening of chemical databases

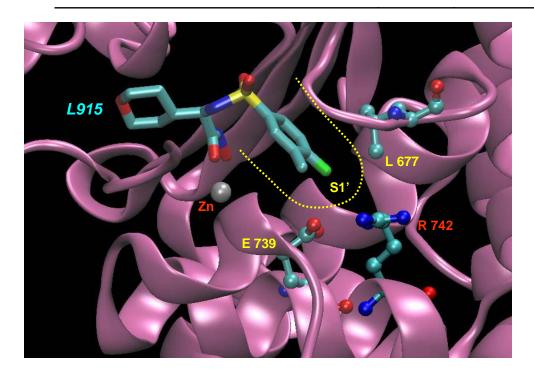
- High Throughput Docking (HTD)
- Similarity searching

Synthetic Chemistry

Design and build molecules for testing

- Explore new hit series
- Optimize activity in lead series

Analytical Chemistry


Determine physicochemical properties

- Partition coefficients (ElogD)
- Solubility
- pK_a determinations

LF Mutants as a Tool for Drug Discovery

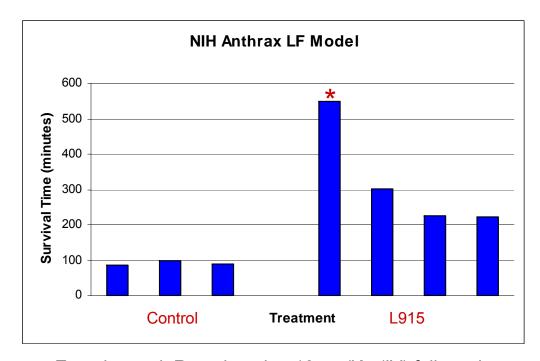
Compound	R ¹	R ²	LF-wt (µM)	L677A (μΜ)	E739A (μΜ)
GM6001 L915	Н	(<i>R</i>)-4-THP	3.64 0.34	20.30 1.04	>300 77.5
O H F	H	(<i>R</i>)- <i>i</i> -Pr	0.55	7.31	>300
	Me	(<i>R</i>)- <i>i</i> -Pr	1.61	3.34	206
$\begin{array}{c c} HO & N & N & N \\ N & N & N \\ H & R^2 & O & O \end{array}$	H	(<i>R</i>)-Ph	0.46	2.00	283
	Me	(<i>R</i>)-Ph	0.61	0.86	>300

- Nine LF mutants were made.
- Compounds which use S1' for binding to LF will display a large loss in affinity when tested against the E739A mutant.
- Structural changes to the S1' binding group can be detected with the L677A mutant.

Prosise, G.; et al. manuscript in preparation

Merck L915: A Benchmark for LF Inhibitors

HO N S K_i = 54 nM (PT = 270 nM)
$$IC_{50} = 210 \text{ nM (cell)}$$
 (PT = 3 uM)


- $t_{1/2}$ (h): mouse (0.4), rat (1.4), rabbit (2.0), dog (4.7), monkey (2.4)
- Monotherapy rabbit study: Dose LFI @ 100 mg/kg s.c. t.i.d. for 7 days (Cmax >150 x K_i), Challenge 10⁴ spores s. c. Saline controls (n=4), t = 0 (n=4), and t = 24h (n=4).
 - Survival rates: saline (0/4), t = 0 (2/4), and t = 24h (1/4).
- Cipro and LFI combination therapy: Challenge 10⁴ spores s.c. @ t = 0 Ciprofloxacin @ 5 mg/kg s.c. b.i.d. for 2 days beginning at t = 66h, and LFI @ 100 mg/kg s.c. 4 times a day for 1 day beginning at t = 66h. Survival rates: saline (0/3), Ciprofloxin (2/4), Cipro + LFI (4/4).
- The two fatalities in the Cipro group had sterile blood and peritoneal cultures supporting toxemia as the cause of death.

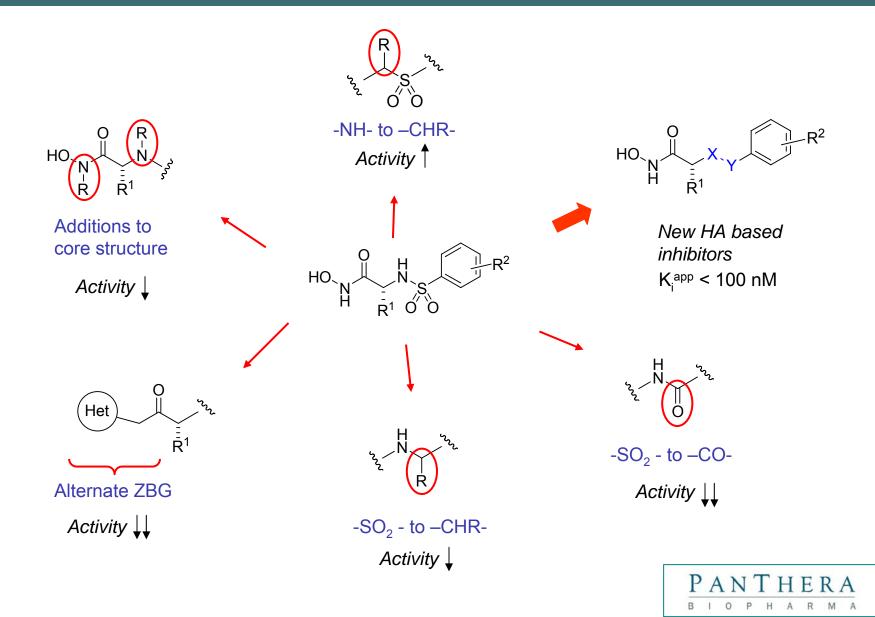
Merck L915 in NIH LT Model Study

Merck L915

LF: $K_i^{app} = 0.2 \mu M$ $EC_{50}(cell) = 3 \mu M$ $t_{1/2}$ (rat) = 1.4 h

Experimental: Rats dosed at 10 mg/Kg (IV) followed 15 to 18 minutes later by 10 µg LT (IV)

- Mean survival time for control animals was 91 minutes.
- Three of the L915 treated animals survived for 300 minutes or less.
- One animal (*) survived after severe malaise.
- NIH model should be good for comparing new LF inhibitors.



Sulfonamide HAs as a Starting Point

- Core structure size and shape sufficient for binding to LF.
- Modifications possible to ZBG and remaining core structure to improve potency, selectivity for LF, and PK profile.

SAR of Aryl Sulfonamide Analogs

Acknowledgements

NIH / NIAID (R44 AI052587)

Medicinal Chemistry

Sean O'Malley
Sina Sareth
Seongjin Kim
Guan-Sheng Jiao
Chris Bayne
Linda McKasson
Mellisa Nagata
Ondrej Simo
Cho Tang

NIH / NIAID

Stephen Leppla Mahtab Moayeri

Lead Discovery / Biology

Sherri Millis
Lynne Cregar-Hernandez
Zhiliang Wang
Dominique Nguyen
Glen Prosise
Alan McClelland
Mark Goldman
Tom Humphreys

Vollum Institute

Gary Thomas
Jason Larson

